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Introduction  

Modeling, Analysis and forecasting of the time series is one of the most crucial task, because it 

has huge amount of applications in all field of science, engineering, economics and finance, in all 

part, where our goal is and we are going to analyze experimental data and make decision based 

on what result we got and what is required. There exist different type of random processes 

(having trend, stationary, ergodic, purely random, etc.), but analyses of processes that contain 

periodical components are also very important in a practice, especially for identification and 

forecasting in economics and financial sphere. (Bartlett, 1987), (Box & Jenkins, 1976), 

(Brillinger, 1975), (Brockwell & Davis, 2009), (Chatfield, 1996), (Granger, 1964), (Hamilton, 

1994) 

Spectral estimation and modeling is especially interesting when we have such time series, 

which contains periodic components and plus white noise and amount of periodic components is 

finite  
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In this model we have following parameters 𝐴𝑗- is magnitude of component j 

  fj-frequency of deterministic periodic component j 

  m-number of periodic components 

  w (t)-is white noise which is independent from periodic components  

In discrete form same model will have following form  
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Again in this model variable n- is an index of current sample; 

𝐴𝑗-magnitude of j components 

𝑓𝑗-its frequency 

 TS_time interval between two adjacent moment of time (fS=1/TS_sampling rate). 

w (n𝑇𝑠) - independent of the periodic components white noise. 

 While analyzing time series of model (2), important task is to estimated parameters from 

given model or to estimate the values of m, 𝐴𝑗 and 𝑓𝑗  ,which is the problem of detection invisible 

periodicities. From a practical point of view, it has numerous applications in important areas of 

science and technology: for instance detection of of resonance phenomena in the operation of 

technical facilities, detection signals in radar technologies and so on. 
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    Main complexity of spectral estimation of time series of type (2) is that stochastic processes 

which is represented by such time series, are not stationary because of it contains deterministic 

periodic components. Existence of such components will cause divergence of Fourier transform 

of corresponding nonsingular integral. Such problems occurs for most of stationary processes, 

which corresponds to this fact that in such case it is used not Fourier transform of stationary 

process itself, but Fourier transform of correlation function of stationary time series.Therefore, 

for analysis of such type of processes, it is considered not their spectra, but their power 

spectrum., which represent Fourier transform of their correlation function. If process is 

stationary, during the time shifting, its correlation function is decreasing more rapidly, which is 

enough for convergence Fourier transform of corresponding correlation function, while for 

processes itself it can be divergent1.,The last circumstance corresponds random nature of 

stationary stochastic processes, during increasing of time shifting, there  is decreasing correlation 

at corresponding shifting time intervals between values of processes, this is  represented in rapid 

decreasing of correlation function and convergence of nonsingular Fourier transform , As a 

result, in theorem of stationary processes, there exist central Wiener–Khinchin theorem, which 

determines conditions for existence of power spectrum, It should be noted that, for most of 

practical tasks, power spectra is more interesting, then spectra of stationary processes itself 

(Bloomfield, 2000), (Pisarenko, 1973), (Box & Jenkins, 1994), (Bracewell, 2000) 

     Conditions for existence power spectra determined by Wiener–Khinchin theorem is not 

satisfied for such signal, which contains deterministic periodic components, for instance let us 

consider following simplest harmonic signal 

                                          )sin()( 01   tAtx ,  

Where parameters ,,1A – are nonrandom real numbers  

It is well known, that correlation function of this signal will have following form  

                          0

2

1 cos
2

)(
A

tx  ,  

where,  – is time shift 

  It is obvious that this is also periodic function and its Fourier form or power spectra 

represents sum of Dirac-Delta functions 

                                                           

 

1.This property of correlation function can be  used as base for determination stationarity more broadly 
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So, for signals, that contain periodic deterministic components, Fourier integral in terms of 

usual function class, does not exist, besides this, for such processes, observation duration is 

always finite, which also causes some kind of distortion in estimation their power spectrum (so 

called windows problems) 

  For time series, which represent a discrete sample from processes (signals), it is possible to 

calculate Fourier image using discrete Fourier Transform, because  time series in general is n-

dimensional vector, and  transform operator is-unitary matrix with rank which means that there  

does not  occurs naturally problem of convergence. .Discrete Fourier transform of time series 

containing deterministic periodic components we are calling Pseudospectrum, as we want  to 

underlain principal difference from  spectrum of stationary processes(detailed explanation of 

Pseudospectrum is given in paragraph 2.2) (Box & Jenkins, 1994), (Bracewell, 2000) 

    Pseudospectrum estimation methods are based on analysis of singular values and singular 

vectors of correlation matrix. There one of important task is resolution problem of periodic 

components that are close in frequency so called Pseudospectrum resolution. The point is that 

existed methods for Pseudospectrum estimation ((Multiple Signal Classification (MUSIC), Eigen 

Values Method and etc) are characterized with low resolution ability, because correlation 

matrices of time series, which are containing periodic components and that periodic components 

are closed to each other in frequency, are ill conditioned, this situation does not give us to 

possibility to separate  components Reliably and therefore effectiveness of these methods  is 

decreased significantly and  their applicability in separating periodic deterministic components in 

real practical  important tasks  are very low. (Laning & Battin, 1976), (Kay, 1993), (Hannan, 

1970) 

 

Problem Statement 

Task of analysis of time series that consists of sum of periodic deterministic components with 

additive white noise is a very important in different field of science: in Radar Technologies, in 

finance, in various engineering problems, etc. Special interest during the analysis of sinusoidal 

time series is devoted to the problem of resolution and resolving capacity. The problem is that 

modern existing classical methods for the estimation of pseudospectrum in majority of cases are 

not able to identify hidden periodic components when their frequencies and amplitudes are close 

to each other. Therefore our objective is to develop new method for increasing resolving capacity 

of time series pseudospectra estimation. This method should be applicable to all existing 
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classical methods of both spectra and pseudospectra estimation. 

 

 

Actuality of topic  

 Actuality of resolution problem or task of hidden periodicities is very important in modern 

science. Starting from Radars in army continue to economical process, it should be mentioned 

that during of processes which occurs in stock markets, many of them are characterized by 

periodical properties, also in vibration, according to actuality of task, correct estimation of 

hidden periodicities and successfully resolving of deterministic components from each other is a 

very crucial factor in designing and modeling of process that is managed by such models. 

Novelty of the investigation     

 Has been developed  new method for estimation Pseudospectrum of time series consist 

of periodic deterministic components, that significantly increase resolving capacity  

 Has been Proposed  new approach of time series approximation, based on  low rank 

tensor approximation 

 Has been Proposed new iterated method for singular value decomposition of data matrix 

 Has been introduced terms of order of low rank approximation and time of singular 

sweeping 

 Has been shown that left and right singular  vectors of data matrix and original time 

series have equal pseudospectral structure 

 Has been shown that by concatenation of singular vectors, we can increase time of 

singular sweeping,  which at the same time increase statistical stability and resolution of 

pseudospectral estimation 

 Based on examples considered in the thesis, Has been shown practical and statistical 

reliability of given result 

 Based on practical examples made by special programming software,  comparative 

analysis of newly proposed method and existed methods has been done , which  has been 

provided effectiveness of new method 
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Practical &Theoretical value of research 

 As far as estimation of pseudospectrum of nonstationary time series and developing new 

method for solving problem of separation periodic components from this pseudospectrum gives 

possibility to significantly increase effectiveness of solution of many practical tasks 

Structure of Thesis  

 Thesis consist of introduction, literature review, theoretical part, practical part, 

conclusion, appendix, 43 figures, 36 tables and 40 references. 

. 

 Basic content of research  

 Chapter 1 

In chapter 1, critical analysis of modern classical spectrum estimation methods are done. Critical 

analysis showed that despite of popularity of those methods, they are characterized by low 

resolution abilities because of several reason: first they generally assume that process is 

stationary (for instance Autoregressive models), also ill-conditioness of correlation matrix (in 

case of Eigenvalue analysis methods) and direct robust estimation power spectrum from given 

data (Periodogram/correlogram)  and finally nonlinear regression  estimation(Prony method for 

analyzing damped sinusoidal models)  significantly reduces  resolution ability of those methods 

and  also increases  statistical instability. On the base of critical analysis of the state of the 

problem, objectives of the research have been determined 

 Objectives of the research  

1. To develope  new method for estimation Pseudospectrum of time series consist of 

periodic deterministic components, that significantly increase resolving capacity  

2. To Propose  new approach of time series approximation, based on  low rank tensor 

approximation 

3. To  Propose new iterated method for singular value decomposition of data matrix 

4. To Introduce terms of order of low rank approximation and time of singular sweeping 

5. To show that left and right singular  vectors of data matrix and original time series have 

equal pseudospectral structure 

6. To show that by concatenation of singular vectors, we can increase time of singular 

sweeping,  which at the same time increase statistical stability and resolution of 

pseudospectral estimation 

7. Based on examples considered in the thesis, to show practical and statistical reliability of 

given result 
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8. Based on practical examples made by special programming software, to do comparative 

analysis of newly proposed method and existed methods, which  will provide 

effectiveness of new method 

 

 

Chapter 2 Theoretical part 

Resolving Capacity 

Resoling capacity (also resolution capacity) represents the most important quality characteristic 

(index) of any classical method of spectral estimation, under this terminology we mean the 

ability to resolve (to separate) spectral response of two sinusoidal signals that are close in 

frequency and magnitude (Milnikov, 2014), (Datuashvili, Mert, & Milnikov, 2014), (Milnikov, 

2013). It is generally assumed that the frequency separation of the two sine waves cannot be less 

than the equivalent bandwidth Be of the spectrum's window (Marple, 1987). Since for time 

series, that consist by sum of deterministic periodic components, for such signals 1oeTB , where 

T0 is the time of observation of the time series in seconds (total observation time), then the 

resolution is assumed to be approximately equal to an inverse value of T0. When we have time 

series that contains stochastic part(random components),then the different estimation criterion of 

the estimation of the spectral resolution is used in this case: the triple product eeBQT , where Q – 

the statistical quality index, defined as the ratio of the variance of the power spectral density 

(PSD) to the square of the expectation of this estimate. In fact it is - an inverted signal / noise 

ratio (SNR - Signal / Noise Ratio), which directly defines and is directly connected to the 

statistical stability of spectral estimation.Acoording to Heisenberg uncertainty, it is already 

known, that for a given time-series (which time interval of its registration is equal To),it is  

impossible that estimations have simultaneously a high resolution (small values of the Bs) and 

high statistical stability - low values of Q (Marple, 1987),note also resolution will not be 

increased if we increase number of samples by changing(increasing or decreasing)  the sampling 

frequency at a constant time interval, as the resolution ability depends only on the length of the 

time interval of the data record(total observation time)and not  on number of samples.  

Simultaneously increasing of spectral resolution and also increasing of statistical stability 

is the main characteristic of the method that has been developed in this thesis. From one side, it 

would seem that it contradicts to the fundamental principle mentioned above, but the point is that 

the Propositions 1 and 2 for deterministic and Proposals 3 and 4 for the random series which will 

be introduced in the later part of thesis, allow: 1. increasing of the observation time T0 and 2. 
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Reducing the value of Q that is, increasing the statistical stability of spectral estimation 

(Sturrock, Scargle, Walther, & Wheatland, 2005) 

 

 Definition of equivalency of pseudospectral structure 

Number of peaks m that are fallen within deterministic area Id and corresponding vector of 

frequencies fi (i=1,2,…,m) are important characteristics of the pseudospectra, and they allow 

introducing notion of  Pseudospectral Structure.  

Let's call a vector of frequencies 
if  of a Time Series, such that ),...,2,1()( miIfpP dii  , 

where dI  is deterministic area, Pseudospectral Structure (PS) of this Time Series. 

Finally definition of Pseudospectral Structure as given above naturally enables us to introduce 

the notion of the equivalence of the two PS. Let two time series have two deterministic areas 
1dI

and ,
2dI also let ),...,2,1( 11 1

miIP di  and ),...,2,1( 22 2
miIP di  be vectors of peaks 

(deterministic components) belonged to deterministic areas 
1dI and 

2dI respectively. (Milnikov, 

2014) 

Definition2. Two time series have the equivalent PS if: 

mmm  21 ; 

.,...,2,1),()( 2

1

1

1 miPpPp ii  

 

The first criteria checks whether the comparing psseudospectra have equal number of 

deterministic components, while second criteria checks – equality of frequencies of the 

deterministic components (frequencies are defined by means of inverse mappings 1p ). Note that 

the Definition 2 requires analyzing of only stochastic areas Id, that is we assume that the 

equivalency of two PS completely determined by their deterministic components and does not 

depend on random background.  

Pseudospectral structure of singular vectors 

Time series with periodic component without noise 

In this section we are considering sample represented by x[1], x[2],…,x[N] ,where N is the 

length of the time series. Its data matrix is defined as follows 

][...]1[][

............

]1[...]3[]2[

][...]2[]1[

NxpNxpNx

pxxx

pxxx

X d




 . 

dX it is – rectangular lp  matrix, where 0<p<N and l=N-p.  
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Using low rank tensorial approximation, we can decompose this matrix as 

)(
1

ii
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

  

Where  

where  -is the sign of the tensorial product; 

q- number of approximation's components (q≤r)2; 

r (r≤min(p,l)) –is the rank of  Xd; 

i - are the singular values of  Xd; 

ui  and  vi – represents left and right singular vectors of Xd, respectively. 

Complete theoretical aspects and proof related to this approach is given in Thesis itself, but here 

we would like to show two important Proposition related to singular vectors of given matrix 

Proposition 1. All 2m singular vectors corresponding to nonzero singular values (left and right) 

of the data matrix dX , constructed according to the time series (2.18), are linear combinations of 

the observations of its periodic component. 

Proposition 2. All 2m singular vectors corresponding to nonzero singular values (left and right) 

of the data matrix dX , constructed according to the time series of the form (2.18), have the same 

pseudospectra, and their pseudospectral structure is identical to the pseudospectral structure of 

the original series.  

Time series with periodic components with additive noise 

When time series is represented by sum of deterministic periodic components and white noise, 

all the elements of the sampled data will contain noise component, that means that the singular 

vectors given by the expansion (2.28) will not be composed only by deterministic parts, but be 

composed of deterministic and noise components. Rank of the data matrix dX  is equal to 

minimum number between (p,l) and will be more than m, which is one of the 2m +1 (m 

magnitudes and frequencies) subjects to be estimated. As we have proved in Proposition 1, 

deterministic components will be present only among the first m terms of the matrix singular 

values (Datuashvili, Mert, & Milnikov, 2014), (Milnikov, 2014), (Milnikov, 2013) 

 

 

 

                                                           

 

2 if q=r, we have accurate representation of Xd by means of decomposition (9). 
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   (2.28) 

Important results and propositions that were developed based on such time series, is given below 

Proposition 3. Principal singular vectors (left and right) of the data matrix dX , constructed 

according to a time series of the form (2.18) are linear combinations of the time series 

deterministic periodic and random (noise) components. The remaining singular vectors 

contain only noise components. (Milnikov, 2014) 

 

Proposition 4. Principal singular vectors (right and left) of the data matrix dX constructed 

according to the time series of the form (2.18) have the same pseudospectra, and their 

pseudospectral structure is identical to the pseudospectral structure of the original series. 

The remaining singular vectors have pseudospectral structure of white noise, different 

from the original series pseudospectral structures and main singular values. 

 

Proposition 5.. Principal singular vectors (left and right) of the data matrix Xd , 

constructed according to a time series of the form (2.18) are linear combinations of the time 

series deterministic periodic and random (noise) components. The remaining singular 

vectors contain only linear combination of only noisy components. 

 

Based on theorems and propositions that were presented in this paragraph, we have proofed that 

pseudospectral structure of  singular vectors of data matrix  are equivalent of pseudospectral 

structure of original time series , as well as  principal  singular vectors(left and right)  represent  

as a linear combination of deterministic periodic components. 

 

Chapter 3 Numerical Examples of Spectra Estimation 

Here we introduce a criterion for estimating the separation of the two peaks of a 

pseudospectrum. It is assumed that the two peaks corresponding to two periodic deterministic 

components are separated, if a "dip" notch between them not less than 3 db, therefore as a 

criterion of separation of two peaks one should use the following coefficient of seperability 

(Datuashvili, Mert, & Milnikov, 2014) 
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Where )( jfP - the value of a smaller peak (between two comparable ones) at the frequency fj; 

)( ifP - Value of notch at frequency fi. 

In this part due to limited   amount of volume, we are going to show   just one practical example 

of comparatively analysis between newly developed method and existing classical methods of 

Pseudospectrum estimation 

Comparative analysis of Estimation spectral resolution methods for periodic deterministic 

signal with high intensity of noise 

Again our model of interest is sum of periodic components and noise 

)()2cos()2sin()( 2211 twtfAtfAtx    

Second additive component is with high intensity, in our case noise is 4db with respect to 

periodic deterministic components, sample size is again 𝑁 = 294,sampling frequency was taken 

as  𝑓𝑠 = 100𝐻𝑧,sample period therefore equal to 𝑡𝑠 =
1

𝑓𝑠
= 0.01  and total time of observation is 

equal to 𝑇0 = 𝑁 ∗ 𝑡𝑠 = 2.94 𝑠𝑒𝑐, resolution frequency is  𝑓𝑟 =
1

𝑇0
= 0.34𝐻𝑧,amplitudes are chose 

as 𝐴1 = 40, 𝐴2 = 30 𝑢𝑛𝑖𝑡𝑠. 

Frequencies difference greater than resolution frequency in case of noisy signal 

Let us consider same model with parameters, but with frequencies𝑓1 = 10𝐻𝑧, 𝑓2 = 10.5𝐻𝑧, 

which salsifies condition that difference between frequencies ∆𝑓 = 𝑓2 − 𝑓1 = 10.5 − 10 >

𝑓𝑟,before start analysis of pseudospectrum estimation methods and their resolution frequencies, 

let us  see how graph of this  noisy signal  looks like 
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Figure 1 Noisy signal with noise intensity 4db, frequencies are 𝑓1 = 10𝐻𝑧, 𝑓2 = 10.5𝐻𝑧 

 As we see from the graph, most part of signal is distorted with noise, so that identification of 

components and frequencies should look very difficult, for comparison point of view, we used  

following three classical method 1.MUSIC(multiple signal classification ) algorithm, 

2.Eig(Eigenvector) algorithm 3.Periodogram(classical nonparametric ) algorithm. MUSIC and 

Eigenvector methods are related to subspace pseudospectrum estimation and main principle is 

Eigenvalue decomposition of correlation matrix, and from signal and noise subspace they are 

trying to identify frequencies, first let us consider MUSIC method which in matlab could be 

written as 

[S,f] = pmusic(x,4,[],100); 

hps = dspdata.pseudospectrum(S,'Fs',100); 

figure; plot(hps); 
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Figure 2 Pseudospectrum estimated by MUSIC method, Noisy signal with noise intensity 4db, 

frequencies and amplitudes are same 

 As we see, MUSIC method was not able to identify hidden frequency, even in case of 

when frequencies difference satisfy separable principle, now let us consider Eigenvector method  

 [S,f] = peig(x,4,[],100); 

 hps = dspdata.pseudospectrum(S,'Fs',100); 

 figure; plot(hps); 

 Result of Eigenvector analysis will be presented on figure (34), MUSIC and Eigenvector 

showed ones again that there were not able to resolve two closed space frequencies, which is 

obviously indicator of their low resolution ability. 
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Figure 3 Pseudospectrum estimation by Eigenvector method, Noisy signal with noise intensity 

4db, frequencies and amplitudes are same 

 Now let us consider Power spectrum estimated by periodogram method, periodogram in 

Matlab programming software can be written as  

 [pxx,f]=periodogram(x, [], [], fs); 

 plot (f,pxx) 

 here x- is time series to be analyzed, as a default we used rectangular spectral window, fs- 

represent as sampling frequency, pxx  is a vector  of estimated power spectrum and  f-

corresponding vector of frequencies,  result of power spectrum estimation is given on figure 35 
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Figure 4 Power spectrum estimation by periodogram method, Noisy signal with noise intensity 

4db,𝑓1 = 10𝐻𝑧, 𝑓2 = 10.5𝐻𝑧 

 Before we start analyzing this signal by our new method, let mention several words related to 

Figure (35), not only periodogram was not able to discover second component, also we can 

easily see high intensity of noise in Power spectrum estimation, different from previous example, 

one reason of losing peak is that because noise intensity to signal is 4dB, that means variation of 

equally distributed independent random values range is equal to ±10,therefore one of peak could 

be covered also  by noise, now  let us consider data matrix X with dimension of  185Χ110, 

which means that  after singular value decomposition , dimension of left singular matrix is equal 

to 185Χ185  and  dimension of right singular matrix  110Χ110, concatenation of first and third 

singular vector  gave us following pseudospectrum estimation result which is given to below 

figure,  
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Figure 5 Power spectrum by periodogram after concatenation of first and third singular vectors 

 Concatenation of singular vectors while keeping same sampling frequency, increased new 

total observation time (time of singular sweeping) to 𝑇𝑛𝑒𝑤 = 3.7𝑠𝑒𝑐, for original time series, 

resolution frequency was 0.34𝐻𝑧, while for new one it is equal to 0.27𝐻𝑧  which gave us 

possibility finding of hidden periodicities, both peak is reliable found, which can be also proved 

by comparison of amplitude of second larger peak to amplitude of its sidelobe. We can easily 

check that it satisfies separation condition (Datuashvili, Mert, & Milnikov, 2014) 

)(10
)(

)(
)( 3.0 ji

fP

fP
fS

i

j
   

 Now we can see pseudospectral structure of concatenated time series by Histogram method, 

which represents as a distribution of peaks of estimated Power spectrum from the new time 

series, Histogram obviously indicates two significantly isolated peak from the rest noise part 
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Figure 6 Histogram of distribution of peaks from the estimated Power spectrum 

  

 Finally estimation of frequencies is easy part and can be implemented by specially written 

matlab script, which will be introduced in Appendix B part. For given example, estimated 

frequencies are 𝑓1 =   9.9609Hz,𝑓2 = 10.5469𝐻𝑧, to check that estimated frequencies  represent 

statistically accepted and  reliable  values, let consider regression model  based on estimated and 

real values of frequencies. First let us consider regression for estimated values 

Regression Statistics 

Multiple R 0.564528122 

R Square 0.318692001 

Adjusted R Square 0.309262132 

Standard Error 48.99249629 

Observations 294 

Table 1 Regression analysis for estimated frequencies in case of high intensity noise. Difference 

between frequencies is greater than resolution frequency 

ANOVA      

  df SS MS F Significance F 

Regression 4 324477.55 81119.39 33.79601748 3.89675E-23 

Residual 289 693676.4961 2400.265   

Total 293 1018154.046       

Table 2 Anova analysis for the estimated frequencies in case of high intensity of noise 
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  Coefficients Standard Error t Stat P-value 

Intercept -1.621848083 2.857517704 -0.56757 0.570766012 

𝜶𝟏 38.73152313 4.087735187 9.475057 1.00555E-18 

𝜷𝟏 11.36050279 4.076441161 2.786868 0.005674446 

𝜶𝟐 25.07853108 4.079035174 6.148153 2.59889E-09 

𝜷𝟐 16.93307867 4.08468556 4.145504 4.45981E-05 

Table 3Evaluation of regression mode for the estimated frequencies. Same model with high 

intensity of noise 

 Estimated coefficients will give us following amplitudes 𝐴1 = 40.36,𝐴2= 30.25, which is 

definitely close to real values of amplitudes, now consider regression analysis for the real 

frequencies 

  Regression Statistics 

Multiple R 0.596000472 

R Square 0.355216563 

Adjusted R Square 0.346292225 

Standard Error 47.66117675 

Observations 294 

Table 4 Regression analysis for the real frequencies 

ANOVA      

  df SS MS F Significance 
F 

Regression 4 361665.1807 90416.3 39.80312642 1.51024E-26 

Residual 289 656488.8654 2271.588   

Total 293 1018154.046       

Table 5 Anova analysis in case of high intensity of noise. Real frequencies case 

  Coefficients Standard Error t Stat P-value 

Intercept -1.602817021 2.779971193 -0.57656 0.564686276 

𝜶𝟏 43.2471426 4.022730687 10.75069 6.72247E-23 

𝜷𝟏 -3.370644475 4.029194565 -0.83656 0.403533698 

𝜶𝟐 34.66073449 4.026170587 8.608859 4.83444E-16 

𝜷𝟐 4.561553768 4.025352492 1.133206 0.258066952 

  

Table 6 evaluation of regression model for time series with high intensity of noise. Difference 

between frequencies is greater than resolution frequency 

 And for real frequencies, calculated amplitudes are 𝑓1 = 43.37, 𝐴2 = 34.95,as we see even 

for real values of frequencies, amplitudes are still difference from real ones and also regression 

did show  small value of Multiple R, which is of course caused by high level of noise, our 

proposed method showed significant power  over existing methods in two  aspects 1. Power 
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spectrum estimated from the concatenation of first and third singular vector showed definitely 

separated two significant peaks, which was not occurred   during analysis of presented methods 

in this thesis 2. Original time series power spectrum picture contained a lot of noise, it was due to  

existence of  high intensity random variables, after singular value decomposition of Hankel 

matrix and vertical concatenation of first and third singular vectors, level of noise was  

noticeably decreased ,that interesting fact can be explained by methods itself ,which plays as  a  

filter role. 

Conclusion  

The main scientific and practical results obtained in the dissertation: 

1 Has been developed  new method for estimation Pseudospectrum of time series consist 

of periodic deterministic components, that significantly increase resolving capacity  

2 Has been Proposed  new approach of time series approximation, based on  low rank 

tensor approximation 

3 Has been Proposed new iterated method for singular value decomposition of data matrix 

4 Has been introduced terms of order of low rank approximation and time of singular 

sweeping 

5 Has been shown that left and right singular  vectors of data matrix and original time 

series have equal pseudospectral structure 

6 Has been shown that by concatenation of singular vectors, we can increase time of 

singular sweeping,  which at the same time increase statistical stability and resolution of 

pseudospectral estimation 

7 Based on examples considered in the thesis, Has been shown practical and statistical 

reliability of given result 

8 Based on practical examples made by special programming software,  comparative 

analysis of newly proposed method and existed methods has been done , which  has been 

provided effectiveness of new method 
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