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Introduction 

Cloud computing is attracting great attention nowadays. The elastic nature of cloud makes it suitable 

for almost any type of organization. The major challenge faced by cloud users and providers are 

security concerns towards cloud services. The ability of a system to react consistently and correctly 

to situations ranging from benign but unusual events to outright attacks is key to the achievement of 

the goals of self-protection, self-healing, and self-optimization.  

  From the security standpoint there are many serious threats against the objects of cloud 

computing. Malware attacks may be initiated against any hosts, as a result the performance-based 

Quality of Service (QoS) will be degraded accordingly, especially in case of the attack mechanism 

that are based on Distributed Denial of Service (D)DoS. The latest achievement in combating these 

phenomena is implementation of autonomic computing paradigm. Autonomic systems exhibit the 

ability of self-monitoring, self-repairing, and self-optimizing by constantly sensing themselves 

therefore tuning their performance. The notions of autonomic components and autonomic-component 

ensembles are considered in this thesis. We also presented the coordinating language for ensemble 

components, which is used to represent specificity of security issues in autonomic computing 

environment. To reveal abnormal behavior of autonomic-component ensembles the information 

theoretical metrics are proposed to use in the approach described in the paper. To realize this approach 

new classes and methods have been developed within an environment for establishing the proper way 

of component ensembles interactions. Additionally this research presents a comprehensive study and 

a new approach for optimization of the hardware resource, which are demonstrated in multiple 

scenarios and case studies. The suggested framework allows us to express formally the desired 

behavior (what is to be implemented, by opposition to how) of a given cloud computing system based 

on rigorous mathematical description. Using formal methods allow us   to guarantee the desired 

behavior or point to conditions that may violate it.  

Content of the thesis. 

In the first chapter (literature overview), we started with an overview around the main concept of 

Cloud Computing, by explaining the conceptual reference model. In addition, we presented 

importance of the formal languages and rigorous explanation within the dynamic networks. 

In the second chapter, we addressed the formal languages in terms of their application to cloud 

autonomic systems. By showing the concepts of SCEL (Software Component Ensemble Language - 
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a kernel language for programming autonomic computing systems) and its run-time implementation 

jResp, we present also different scenarios that explain and clarify the main contributions of proposed 

framework.  We present the theoretical ground of the approach which is based on the Kolmogorov 

Complexity metrics, with complementary use of the Kullback-Leibler  metrics. How it could be 

implemented in the actual environment of SCEL with respect to the enforced SLA is also 

demonstrated in the chapter. 

In chapter three, which essentially is based on results obtained  in chapter two, formal 

verification (using Kripke structure and  SPIN as our proposed model checking and formal verification 

tool) in the autonomic cloud computing environment has been precisely reported.  In the last section 

of the research, we ended up with the conclusion and future work that could be an interest of any 

researcher whoever has an interest in the same direction (modeling of autonomic cloud computing, 

formal verification and model checking of policy conflict in the autonomic distributed software 

systems). 

Methodology 

To achieve objectives set in the thesis, the following techniques and research methods have been used:  

 Formal methods approach is widely used in the thesis as the main methodology. The central 

problem of formal methods is to be able to guarantee the behavior of a given computing system 

following some rigorous approach. At the heart of formal methods, one finds the notion of 

specification. A specification is a model of a system that contains a description of its desired 

behavior—what is to be implemented, by opposition to how.  

 Autonomic cloud systems were described by using the specialized formal language SCEL 

(Software Component Ensemble Language) that enables users to model and describe behavior of 

service components plus their ensembles, their interactions, their sensitivity and adaptivity to the 

environment they are working in. 

 Kernel notions and elements of SCEL - set of programming abstractions that permit to represent 

behaviors, knowledge, aggregations according to specific customized policies, and to support 

programming context-awareness, self-awareness and adaptation - are used in the thesis. 

 Autonomic Components Ensembles are based on the idea of virtualization. The term virtualization 

broadly describes the separation of a resource or request for a service from the underlying physical 
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delivery of that service. With virtual memory, for example, Computer software gains access to 

more memory than its physically installed, via the Background swapping of data to disk storage.  

 Abstract constructions of SCEL are programmatically implemented with the jResp-Java based 

implementation of main concepts of SCEL. 

 Security issues related to Autonomic Components Ensembles are realized with the informational- 

theoretical methodology of Kolmogorov complexity metrics and Kullback- Leibler divergence 

metrics. 

 Formal Verification of Autonomic Components ensembles provision of required (SLA) is carried 

out by using model-checking methodology based on Linear Temporal Logic and software tool 

SPIN. 

Purpose of the Study  

Generally, the proposed research is to  identify the main threats,  which the IaaS and PaaS layers, 

respectively, are  exposed   by means  of exploring what is behind the cloud computing, its core 

services and components. The next area of the research is to develop and explore reliable and 

comprehensive methods of defense from the indicated threats. In this context, main objectives of the 

research are determined below: 

• To explore thoroughly the area via studying related works. 

• To understand and  clarify the specific purposes and ideas of the distributed and dynamic software 

systems in terms of violation of certain security policies  that  affect the overall SLA and the 

Quality of Service accordingly 

• To explore and describe the current challenges of potential threats that may exists against the 

traditional systems and its transition from the physical generally environment to IaaS & PaaS. 

• To identify and investigate the potential attack mechanisms within hypervisors and between  

different  hypervisors 

• To provide some recommendations regarding the risks mitigation  and ways of building a highly 

secured infrastructure 

• To analyze the associated issues in terms of the self-managing components within the distributed 

software systems and give some optimized solutions for improving the whole infrastructure.  

• To develop and implement formal methods and techniques for modeling and analysis security 

issues in autonomic cloud computing systems. 
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• To develop  algorithms that capable to handle the computing processes  across the large distributed 

and dynamic computing grids, which are Autonomic Computing (AC)-based systems, as well as 

interaction between  component ensembles with their  relations to  Distributed Resource 

Algorithm (DRS) 

• To develop  solutions for AC infrastructure enabling applications, running on components of  

particular ensemble,  to  move under some circumstances to other  healthy hosts within the 

datacenter  

• To develop formal verification methods termed model checking that can be used to detect conflicts 

in autonomic computing policies. 

The Main Contributions and the Scientific Novelty: 

• A new approach to the analysis and evaluation of rapidly growing field of IT-Autonomic Cloud 

Computation (ACC) - is offered in the thesis. ACC represents a promising approach to achieving 

high level of adaptiveness, and expressiveness by adding self-management capabilities to the 

components of IT systems. Rigorous mathematical techniques termed formal methods to improve 

the predictability and dependability of AC is proposed and employed in the thesis. Formal methods 

offer appropriate abstractions to deal with the large dimension of autonomic cloud systems, and 

with their need to adapt to the changes of the working environment and to the evolving 

requirements. 

• A set of programming abstractions that permit to represent behavior, knowledge, and aggregations 

according to specific policies, and to support programming context-awareness, self-awareness and 

adaptation have presented in the thesis. Based on these abstractions, the Software Component 

Ensemble Language (SCEL), as well as a kernel language for formal reasoning on autonomic 

systems behavior is used in a new context – provision of security in terms of revealing malware 

threats such as DDOS. 

• The formal constructions of SCEL are updated and complemented by newly developed objects, 

which allow researchers to create and formally investigate scenarios of various malware threats in 

rigorous mathematical manner. 

• A new approach (and corresponding constructions) for interactions between AC and their behavior 

is proposed in the thesis. It allows autonomic components numerically estimate level of security 

threats on regular basis and undertake the relevant actions. Namely, web services running on AC-
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VMs in case of increased threats can operatively move from current (insecure) components to 

secure ones. Moreover, this is very important to maintain the required Service Level Agreement 

(SLA). 

• The informational- theoretical metrics –Kolmogorov complexity (KS) –levels of security threats 

in the new, original context have measured in numerically estimate using KS. The KS is used by 

component’s knowledge interfaces and it is computed by component’s Autonomic Managers 

AMs. Unlike known ways of using KS in IT systems, autonomic independent and parallel 

computation of KS for all existing components, based on so-called numerical estimation of packet 

flows. 

• Although KS is not computable, the approximation of KS by using string compression 

mechanisms is proposed. New programmatic objects of jResp (Java implementation of the SCEL) 

are developed and added to implement this approximation of KS. Namely, new classes and 

methods “complexitySensors” are developed. 

• A new interpretation of KS. It allows users to interpret KS in probabilistic manner (as known, 

generally KS is informational-theoretical notion, not probabilistic) and use it for formal 

verification of autonomic-component ensembles. 

• A new structural model of formal technique termed model checking is proposed to detect conflicts 

in AC policies and SLA breaches. This technique essentially uses the proposed interpretation of 

KS. Namely, the probabilistic interpretation of KS is used in the thesis to numerically estimate 

distribution of response time including (downtime time) of VMs and essentially refine the 

migration time of VMs, which is important for detection of SLA violation. 

Practical Implications and Importance 

The main purpose of the research is to produce a relevant framework that could be adopted in modern 

IT infrastructure (see section 2.16). The contributions of the research is intended to be the main stream 

in research of autonomic cloud computing. The presented work can be further developed for security 

and policy conflict verifications within the autonomic computing environment 
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Structure and volume of the work  

The thesis study is 178 pages and consists of 3 chapters, a list of references and list of figures and list 

of tables. 

Definition of the Problem 

The notions of autonomic components (ACs) and autonomic-component ensembles (ACEs) have been 

put forward as a means to structure a system into well-understood, independent, and distributed 

building blocks that interact in specified ways. ACs are entities with dedicated knowledge units and 

resources that can cooperate while playing different roles. Awareness is made possible by providing 

ACs with information about their own state and behavior that can be stored in their knowledge 

repositories. These repositories also enable ACs to store and retrieve information about their working 

environment, and to use it for redirecting and adapting their behavior. Each AC is equipped with an 

interface, consisting of a collection of attributes, such as provided functionalities, spatial coordinates, 

group memberships, trust level, response time, etc. 

Attributes are used by the ACs to dynamically organize themselves into ACEs. Individual ACs not 

only can single out communication partners by using their identities, but they can also select partners 

by exploiting the attributes in the interfaces of the individual ACs. Predicates over such attributes are 

used to specify the targets of communication actions, thus providing a sort of attribute-based 

communication. In this way, the formation rule of ACEs is endogenous to ACs: members of an 

ensemble are connected by the interdependency relations defined through predicates. An ACE is 

therefore not a rigid fixed network but rather a highly dynamic structure where ACs' linkages are 

dynamically established. The proposed abstractions are the basis of SCEL (Software Component 

Ensemble Language), a kernel language for programming autonomic computing systems.  

The following scenario is considered. A singleton application currently runs on one of the VMs at 

Data Center 2 (VM7 in Service Component Ensemble 2)..  This application runs alone on its node 

and,since the application is a singleton, no additional instances can be spawned. During the sessionthe 

application experiences consistently high CPU load. This increase may be caused either by legitimate 

traffic overload or by coordinated attacks (DDOS) launched against the PaaS provider. The latter 

might be wrongly assumed legitimate requests and resources would be scaled up to handle them. This 

would result in an increase in the cost of running the application (because provider will be charged by 

these extra resources) as well as a waste of energy.  
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Figure 1: Cloud Platform and CPi Migration 

 

 

 

 

 

 

 

 

 

 

 

Source: Pandey, Voorsluys, Niu, Khandoker, & Buyya, 2012, Page- 48 

Hence, it is necessary to distinguish between these two cases, the earlier this distinction is made, the 

higher is the degree of protection of the application from failure and poor performance.To provide 

this protection, the following security measures are suggested. The traffic flows through the node 

(CPi) has to be analyzed using Kolmogorov complexity metrics (see later in the text). During the 

session the constant monitoring of the metric (by the special probe implemented in the separate  

module), along with measure of CPU load, is being executed. If the simultaneous increase of these 

two  metrics is registered at least in 3 successive time units, the conclusion about the real treat of the 

DDOS attack must be drawn. As a result, the application has to migrate from the CPi where it was 

running to another CPi (which may belong to the same ensemble or other ensemble). A new CPi must 

be found according to some requirements: complexity level and  CPU load must be rather low, 

integrated hardware index (which includes such indicators as processor speed, available memory, 

available disk space, number of cores, etc) must correspond to the application resource requirements 

(they are published in the interface of the CPi where the application is running). If the required CPi is 

found, the application has to migrate there as soon as possible  and stop its running on the “old” CPi. 

The process formally can be described in SCEL statements. We assume that, other than id, the 

interfaces     and      provide the attributes “ComplexityLevel”, “CPULoad” and “Memory” stores a 

context information, updated by the underlying infrastructure (usually, from the firewalls, gateways 
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or special probes) and are `sensed' by the managed element. The CPi where the application is running 

is the SCEL component: 

The autonomic manager AM is defined as follows: AM      PComplexityMonitor [PCPULoad [PmigrateCP]] 

PComplexityMonitor     qry(“ComplexityLevel”, “high”) @ self. 

get(“ComplexityHigh”, false) @self. 

put((“ComplexityHigh”, true) @self. qru(“ComplexityLevel”,”low”)@self. 

get(“ComplexityHigh”,true)@self. 

put(“ComplexityHigh”,false)@self.PComplexityMonitor 

PCPULoad       qry(“CPUloadLevel”,“low”)@ self. get(“CPULow”, false) @self. 

put((“CPULow”, true) @self. qru(“CPUloadLevel”,”high”)@self. 

get(“CPULow”,true)@self. 

put(“CPULow”,false)@self. PCPULoad 

PMigrateCP i     qry(“Cloud service”, ?X)@ self 

get(“Cloud service_args”, ?sessionId, ?memoryValue, ?CPUValue) @self. 

 /* retrieving from the knowledge repository the process implementing  a required functionality  

id and bounding it to a process variable X  */ 

/* searching an item   c   among components belonging to the ensemble identified by predicate 

 */ 

qry(“CPiId”, ?c) @ .   

/* storing actual parameters  of the process  to be executed in the found component c : moving 

from VM7 to /*MV5 on fig.2  */ 

put(“Cloud service”, ?sessionId, ?memoryValue, ?CPUValue)@c  

get(“Cloud service”, “sessionId”, “terminated”) @self.  

 /* removing the process from the    knowledge repository of ‘old’ CPi */ 

 get(“Cloud service”, “sessionId”, X) @self.nil 

 /* eliminating the process in ‘old’ CPi */ 

Here the predicate       is determined as follows:  

           (   ) =(    .ComplexityLevel=”low”)   (   .CPULoad <75) (    .Memory>=500) ) 

and is used for group-oriented communication in the action  qry(“CPiId”, ?c) @. This  predicate                    

defines the ensemble of components which publish in their interfaces attributes “ComplexityLevel”, 




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“CPULoad” and” Memory”along with relevant values. We assume that these  attributes are provided 

by the interface of each component and obtain dynamically updated values from corresponding  probes 

(sensors) as a result of constant monitoring (sensing) of the computing environment. We assume also 

that the attribute “ComplexityLevel” gives an  indication in the range [0:1] of the complexity level (see 

explanation below in the text) of data flow through the ensemble, the attribute “CPULoad” – in the 

range [0:100], the attribute “Memory” – in the range [0:1000]. In this context the meaning of the 

predicate         is as follows: find a component CPi (or components) where the  “ComplexityLevel” is 

low (i.e. less than 0.15), “CPULoad” is less than 75  and  available memory index “Memory” is more 

than 500. 

 

Independently of the service component  on which  the cloud service is being executed  ( “old ‘ CPi 

or newly found “receiver of migrated service” CPi) the  SCEL statements which describe the process 

Ps  executed by the managed element  ME are as follows: 

Ps       get (“Cloud service”, ?sessionId, ?memoryValue, ?CPUValue)@self. 

get(“CPUload”, ?L) @self.  

/* L is  a current CPUload of the component 

get(“memory”, ?M) @self. 

/* M  is a current allocated memory  

put(“CPUload”, (L+ CPUValue))@self. 

put(“memory”, (M- memoryValue ))@self.    

Ps [X(sessionId, memoryValue, CPUValue)]    

 /* the new process (additionally  to the already running process Ps), having actual parameters 

sessionId, memoryValue, CPUValue, starts  */  

In the thesis the run-time Java implementation of the SCEL formal code (expressed in jResp 

environment) has been developed. The main classes of jResp, corresponding to the above SCEL code, 

are as follows:  ServiceComponent, CloudService, ServiceCaller, RequestHandler, OfferAgent. 

The scenario,   described above, is realized by means of jResp classes Scenario and Main (the 

structure of datacenter): 

 

 


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Figure.2 Structure of the datacenter. 

 

 

public class Main { 

 private Scenario scenario; 

 private Random r = new Random(); 

 private Target id; 

               public Main(int size){ 

  this( new Scenario(size, new Random() , 900, 1000, 99, 100) ); 

 } 

/* above the minimum and maximum values of components’ memory (900 and 1000,  

/* respectively) and minimum and maximum values of components’ CPU rates (99 and 

/* 100, respectively) are defined 

 

              public Main(Scenario scenario) { 

  this.scenario = scenario; 

  instantiateNet(); 

  } 
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              private void instantiateNet() { 

  Random r = new Random(); 

  SimulationScheduler sim = new SimulationScheduler(); 

  SimulationEnvironment env = new SimulationEnvironment(sim, new  

                             RandomSelector(r), new DeterministicDelayFactory(1.0) ); 

  sim.schedulePeriodicAction(new SimulationAction() { 

 

            VirtualPort vp = new VirtualPort(10); 

            Hashtable<String, Node> nodes = new Hashtable<String, Node>(); 

            for(int i=0; i<scenario.getSize(); i++){ 

                                       Node n = new Node("ServiceComponent"+i, new TupleSpace()); 

             n.addPort(vp); 

                                        n.addSensor(scenario.getComplexitySensor(i)); 

                                        n.addSensor(scenario.getCpuSensor(i)); 

                                        n.addSensor(scenario.getMemorySensor(i)); 

                 n.addActuator(scenario.getServiceInvocationActuator(i, n)); 

                                        n.addAttributeCollector(scenario. getComplexityAttributeCollector  ()); 

                  n.addAttributeCollector(scenario.getCpuLoadAttributeCollector()); 

                  n.addAttributeCollector(scenario.getCpuRateAttributeCollector(i)); 

                                        n.addAttributeCollector(scenario.getMemoryAttributeCollector()) 

                                        n.put(new Tuple("REQUEST", 1, new CloudService("1", 10, 2.0),  

                                        n.getLocalAddress() )); 

                                        n.put( new Tuple( "LOCATION" , n.getLocalAddress() ) ); 

                                        Agent a= new RequestHandler(); 

                                        n.addAgent(a); 

                             a=new OfferAgent(); 

                 n.addAgent(a); 

                nodes.put(n.getName(), n); 

                     } 

          for (Node n: nodes.values()) { 
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                 n.start(); 

                             /* for simulation option: 

                             /* env.simulate(10000); 

 

                          public static void main(String[] args) { 

             int size=8; /* Here 8 components (virtual machines) start   

                           /* high complexity level (=1, no security threats) is assigned to  all virtual   machines 

  ServiceComponent c0 = new ServiceComponent ( 0 ,1, 0 , 1 ); 

  ServiceComponent c1 = new ServiceComponent ( 1 , 1, 100 , 1 ); 

  ServiceComponent c2 = new ServiceComponent ( 2 , 1, 100 , 1 ); 

                           ……………………………………………………………………… 

                           ServiceComponent  c7= new ServiceComponent (7, 1, 100,1); 

  new Main( new Scenario( c0 , c1 , c2, c3, c4, c5, c6, c7 )); 

                    } 

} 

In order to include into autonomic components ensembles the process of regular monitoring and 

updating of Kolmogorov complexity level, we need to make significant changes in jResp sensors 

implementation. Regularly recalculated and obtained Complexity metrics attributes have to be 

incorporated in knowledge space of components. For this reason, the necessary changes are shown 

and described. First, all attributes sensors are extensions of base class AbstractSensor (which is one 

of the basic classes of jResp): 

public abstract class AbstractSensor extends Observable { 

  protected String name; 

  protected Tuple value; 

  public AbstractSensor(String name) { 

  this.name = name; 

 } 

  public String getName() { 

  return name; 

 } 
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  public final Tuple getValue() { 

  return value; 

 } 

  public final void setValue( Tuple t ) { 

  this.value = t; 

  this.setChanged(); 

  this.notifyObservers(t); 

 } 

} 

In order to regularly update complexity level attribute, components’ autonomic managers have to 

connect to the netflow enabled router (see later) as sensor client using socket technology. On the other 

hands, the router has to get this connection (through socket technology). 

public class ComplexitySensorClient  extends AbstractSensor { 

              private String serverAddress; 

 private int serverPort; 

 private Gson gson = RESPFactory.getGSon(); 

 private long refreshTime 

 

      public ComplexitySensorClient t(String name , String serverAddress , int serverPort , long 

refreshTime )   

              throws IOException { 

  super( name ); 

  this.serverAddress = “148.169.2.45”; /* this is a network address of the router 

  this.serverPort = 1024; 

  this.refreshTime = refreshTime;   

  new Thread( new SensorThread() ).start(); 

 } 

 

      public class SensorThread implements Runnable { 

  @Override 



14 

 

  public void run() { 

   while (true) { 

    Socket s; 

    try { 

     System.out.println(getName()+" requests a complexity  

                                                             value..."); 

     s = new Socket(serverAddress,serverPort); 

     BufferedReader reader = new BufferedReader(new  

                                                            InputStreamReader(s.getInputStream())); 

                                                            Tuple t = gson.fromJson(reader, Tuple.class); 

                                                           /* Json for serialization of tuples and messages 

     reader.close(); 

     s.close(); 

     System.out.println(getName()+" delivers a complexity  

                                                             value..."); 

     setValue(t); 

                                                            } catch (UnknownHostException e) { 

     // TODO Auto-generated catch block 

     e.printStackTrace(); 

    } catch (IOException e) { 

     // TODO Auto-generated catch block 

     e.printStackTrace(); 

    } 

    setValue(null); 

    try { 

     Thread.sleep(refreshTime); 

    } catch (InterruptedException e) { 

     e.printStackTrace(); 

     return ; 

    } 
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   } 

  } 

 } 

} 

 

The class ComplexitySensorServer  allows remote components to access to a sensor via a network 

connection and retrieve complexity level. Implementation of the class is similar to the  

ComplexitySensorClient (again through  socket technology). As  a result, updating of  the complexity 

level  attribute which occurs  in the method updateSensorsValue() of the ServiceComponent class 

is performed regularly (after specific time  period).   

In the approach  to autonomous computing security and anomaly detection, developed in the thesis,  

the notions of netflows, their informational-theoretical metrics and components’  autonomic 

manager are essentially leveraged.  A network flow can be defined in many ways. In a general sense, 

a flow is a series of packets with some attribute(s) in common. Each packet that is forwarded within a 

router or switch is examined for a set of IP packet attributes. These attributes are the IP packet identity 

or fingerprint of the packet and determine if the packet is unique or similar to other packets. All packets 

with the same source/destination IP address, source/destination ports, protocol interface and class of 

service are grouped into a flow and then packets and bytes are labeled. This methodology of 

fingerprinting or determining a flow is scalable because a large amount of network information is 

condensed into a database of  netflow  information called the netflow cache.  

A netflow-enabled device (netflow exporter: router or switch)  sends to the netflow collector  

(fig.3)single flow as soon as the relative connection expires. Packets captured by the netflow collector 

are stored to a flow storage. Port and address IP distributions are highly correlated in network traffic. 

For this reason, we only considered source and destination IP.  

 

 

 

 

 

http://en.wikipedia.org/wiki/Packet_flow
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Figure 3: Interaction between NetFlow devices and autonomic components 

 

Source: Haag, User Documentation nfdump & NfSen , 2014 

Flows accumulated at the flow storage, are then subdivided into component flows. That is, flows, 

which have the component’s IP address as a destination address, are grouped and sent to the 

corresponding component (more exactly, to the autonomic manager of a component - these flows are 

marked with blue arrows on the fig.3). After receiving their destined flows, the component’s 

autonomic manager can start the processing in order to reveal the abnormal behavior of flows in 

accordance with the technique, which will be described further. In the thesis the different files with 

the particular titles (relevant to the concrete SCPi‘s IP addresses) to store component flows are used.  

Stated as simply as possible, it is hypothesized that information, comprising observations of actions 

with a single root cause, whether they are faults or attacks, is highly correlated.  Highly correlated 

data has a high compression ratio. The Kolmogorov Complexity, K(x), of a string of data measures 

the size of the smallest program capable of representing the given piece of data. It measures the degree 

of randomness for the given data. The length of the shortest program to generate a completely random 

string is equal to the size of the string itself. For all other cases, it is smaller than the size of the string 
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and the program size becomes smaller as more regularity or pattern is discernible from the string. A 

side effect of this measure is its ability to represent the correlation between disparate pieces of data. 

This side effect is exploited to design an effective method for detecting DDoS attacks. The DDoS 

attack detection algorithm makes use of a fundamental theorem of Kolmogorov Complexity that states 

for any two random strings X and Y,  

                                                K(XY)≤K(X)+K(Y)+c,                

Where K(X) and K(Y) are the complexities of the respective strings, c is a constant and K(XY) is the 

joint complexity of the concatenation of the strings. Simply put, the joint Kolmogorov complexity of 

two strings is less than or equal to the sum of the complexities of the individual strings. The 

equivalence holds when the two strings X and Y are totally random, i.e. they are completely unrelated 

to each other. Another effect of this relationship is that the joint complexity of the strings decreases 

as the correlation between the strings increases. Intuitively, if two strings are related, they share 

common characteristics and thus common patterns.  In terms of detection of DDoS attacks, the 

property given by inequality (1) is exploited to distinguish between concerted denial-of-service attacks 

and cases of traffic overload. The assumption is that an attacker performs an attack using large 

numbers of similar packets (in terms of their type, destination address, execution pattern etc.) sourced 

from different locations but intended for the same destination. Thus, there is a lot of similarity in the 

traffic pattern. A Kolmogorov complexity based detection algorithm can quickly identify such a 

pattern. On the other hand, a case of legitimate traffic overload in the network tends to have many 

different traffic types. The traffic flows are not highly correlated and appear to be random. Therefore, 

the algorithm samples every distinct flow of packets (distinguished by their source and destination 

addresses) to determine if there is a large amount of correlation between the packets in a flow. If it is 

determined to be so, then all suspicious flows at the node are again correlated with each other to 

determine that it is indeed an attack and not a case of a traffic overload. 

While it is known that, in general, Kolmogorov complexity is not computable, various methods exist 

to compute estimates of the complexity. It is possible to obtain an upper bound of it (which in practice 

is a very good approximation) by using a universal compression algorithm, like Lempel and Ziv The 

component’s autonomic manager is used for monitoring the corresponding  (its own) flows  and 

calculating estimates of  the complexity. A component’s session trace consists of all packets of the 

flows during some specified time (session). These traces are concatenated and converted into ASCII 
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string (using tools nfdump, tcpdump or Win_RK). Then this string s is compressed using the Lempel-

Ziv algorithm (LZW.java), thus obtaining a new shorter string s1. Now the Kolmogorov complexity 

(KC) as the ratio between the length of s and the length of  s1  can be  calculated. Given that the length 

of s1 can never be longer that the length of s, the KC is always between 0 and 1.  

 To estimate the possible range of KS metrics’ value that indicates a lot of similarity in the traffic 

pattern (thus, large numbers of similar packets (in terms of their type, destination address, execution 

pattern, etc., which is suspicious from the standpoint of DOS or DDOS attack), numerous simulation 

experiments were carried out in the thesis.. The well-known simulation tool CloudSim - a framework 

for modeling and simulation of cloud computing infrastructures and services – has been used. The 

goal of the simulation was the determination of affects that had different options on autonomic packet 

flows between components  SCPi  ensembles. As a result of simulation experiments we determined 

that the range of Kolmogorov Complexity metrics’ values that indicates a rather high level of DDOS 

threats is in the range 0÷0.15. This value is accepted in the thesis as a serious security threat.  

To reduce the probability of so-called “false positive alarm” (that is, when alarm of DDOS attack treat 

arises in conditions of regular “healthy” traffic) another information theory metrics, namely, 

Kullback-Leibler divergence metric is used in the thesis. In case when both metrics (Kolmogorov 

Complexity level and Kullback-Leibler divergence metric) have relevant low values, then we assume 

that the probability of DDOS attack is extremely high. In jResp the computation of the Kullback-

Leibler divergence metric is executed again in the class ComplexitySensorServer  (similarly as it is 

computed for Kolmogorov Complexity metrics). 

The IT infrastructure provided by the datacenter owners/operators must meet various SLAs 

established with the clients. The SLAs may be resource related (e.g., amount of computing power, 

memory/storage space, network bandwidth), performance related (e.g., service time or throughput), 

or even quality of service related (e.g., 24-7 availability, data security, percentage of dropped 

requests). A datacenter comprises a large number of potentially heterogeneous servers chosen from a 

set of known and well-characterized server types. In particular, servers of a given type are modeled 

by their processing capacity       and main memory size            as well as their operational expense 

(energy cost), which is proportional to their average power consumption. Each client produces one or 

more VMs, which are executed on some servers in the datacenter. Each client has also established an 

SLA contract with the datacenter owner. Performance of each client in the cloud computing system 
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should be monitored and necessary decisions should be taken to satisfy the SLA requirements. A client 

in the system is application software that can produce a number of requests in each time unit. To 

model the response time of clients, we assume that the inter-arrival times of the requests for each 

client follow an exponential distribution function similar to the inter-arrival times of the requests in 

the e-commerce applications. The minimum allowed inter-arrival time of the requests is specified in 

the SLA contract. The exponential distribution function is used to model the service time of the clients 

in this system. Based on this model, the response time distribution of a VM (placed on server j) is an 

exponential distribution with mean: 

                                                                                                                                                     (1) 

Where µij  denotes the service rate of the ith client on the jth server when a unit of processing capacity 

is allocated to the VM of this client. The VM unit is defined as the basic unit of virtual resource, which 

is associated with a set of physical resources such as CPU time, main memory, storage space, 

electricity etc. In real cloud systems, any virtual resource a customer can apply should be a multiple 

of the VM unit.  

As it was stated above, in case of high probability of the DDOS attack  the  immediate migration of 

the component from the VM ( where  the component is being run currently) to another VM (which is 

to be selected by using the ensemble’s components autonomic managers’ knowledge base and issuing 

the special SCEL statement qry) is required. The time of migration must be taken into account when 

determining the response time based on (1). Migrating a VM between servers causes a downtime in 

the client’s application. Duration of the downtime is related to the migration technique used in the 

datacenter. The downtime  also is the function of the link speed and VM memory size. 

In the thesis the following approach to update response time distribution of a VM (1) is implemented. 

Although the Kolmogorov complexity (KS) by its original definition is not the probabilistic notion (it 

is an informational-theoretical one), we use the KS in the form obtained by using Lempel-Ziv 

compression algorithm (which converts the original KS indicator into the values in range 0 ÷ 1). Now 

we can consider the indicator as some approximation of probability of existence of malware  (DDOS) 

threats. Namely, we estimate the probability of the fact that a jth server allocated to the ith client’s VM 

is exposed to the malware threat  of attack (and needs to migrate) as the value : Prob(MigrVM ij) =1-

KSij . Then the formula (1) must be updated by adding the term representing the expected  downtime 

of the VMij: 
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Here we assume that VM memory size is constant and is equal to 1,024 MB. This value of downtime 

will be essentially used in the approach of formal verification of autonomic computing  system 

developed in the thesis. 

Autonomic systems are defined as systems that “manage themselves according to an administrator's 

goals". The effectiveness of the self-management depends on the quality of the autonomic computing 

policies used to express these goals. Poorly defined policies lead to ineffective self-management; 

conflicting policies can be downright damaging to the autonomic system.  A formal technique termed 

model checking can be used to detect conflicts in autonomic computing policies. Model checking 

represents a formal technique for verifying whether a system satisfies its specification. The technique 

involves building a mathematically based model of the system behavior, and checking that system 

properties specified formally in a temporal logic hold within this model. For each refuted property, 

the technique yields a counterexample consisting of an execution path for which the property does not 

hold. The result is based on an exhaustive analysis of the state space of the considered model - a 

characteristic that sets model checking apart from complementary techniques such as testing and 

simulation. 

The system model most commonly used in model checking is termed a Kripke structure. It consists 

of a state transition graph                                  , where S represents the finite set of states in which the 

system can exist,               is the set of the initial states, is a relation that defines all possible transitions 

between states, and                          is a labelling function that labels each state with the set of atomic 

propositions that are true in that state.  

Commonly used temporal logics include linear temporal logic (LTL). The approach to verifying 

autonomic computing policies described in the thesis uses LTL, which is a logic that adds the temporal 

operators in Table 2 and calculation for them to first-order logic 

 

                                     

Table 2. Basic rules of Linear Temporal Logic (LTL) 
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An LTL formula such as φ   and  ψ  in this table is a combination of atomic propositions, logical 

operators   and the LTL temporal operators      ,      ,      and  U  . Given a Kripke structure   

                                    and an LTL formula ϕ , the notation             is used to state that the system 

model M satisfies the LTL formula  ϕ . For example, if                is an atomic proposition,                    states 

that  a  is eventually true on the every path from each state           . 

The approach used in the thesis to verifying autonomic computing policies requires that two types of 

information are available for the autonomic system: 

 A structural model that specifies the system parameters that need to be monitored or controlled for 

the considered application, and their value domains 

 A performance model that defines the   relationships between the system parameters defined in the 

structural model, and between these parameters and any internal parameters that the system may 

have.  

The steps involved in building the Kripke structure and the LTL formulas are detailed below: 

1. The set of system states S and the set of  initial system states            are derived from the 

structural model of the autonomic system. 

2. The labelling function                          is  extracted from the performance model for  the system.  

3. The state transition relation                   is  defined by the operation rules (i.e., by the action 

policies) for the system. 

4. Finally, system constraints specified by a  goal policy correspond to LTL formulas φ  that 

model M must always satisfy:    M ╡     φ  . Likewise, the final-state conditions  expressed by 

goal policies correspond to LTL formulas y that model M must “eventually” satisfy: M ╡    ψ   

The assertions   M ╡     φ      and       M ╡    ψ         obtained in step 4 are verified using a standard 

LTL model checker. If these assertions are true, then the policy set is conflict free, i.e., its action 

policies take the system from any initial state to a valid final state transitioning only through 

intermediate states that satisfy the invariants specified by the constraint goal policies. If one or more 

assertions are not true, the policy set contains conflicts. The counterexample generated by the model 

checker for each such assertion can be used to identify reachable states that do not comply with the 

system invariants and/or unreachable final states, and thus represent a starting point for resolving the 

policy conflict. To illustrate the application of model checking to conflict detection in autonomic 

computing policies, we consider a case study that presents VMs migration described above.  
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Structural model. The monitored and controlled data-centre parameters relevant for this case study 

are: 

Number of homogeneous servers within cluster = 6; 

Capacity of a single server in cluster :   capacity)server  ofunit  a as (assumed  GHz 3p

jC  m

jC 8   

GB of RAM;  j=1÷6  

 Number of clients’ classes  k=2;  

 Number of clients   assigned to each  server  is randomly generated between 1 and 3, each client is 

randomly picked from one of two classes;  

Portion of the    ith   client’s request served by the jth server (host of a VM)    αij   is uniformly    selected     

between 0 and 1;      

Average request rates of the   ith   client i   are chosen uniformly between 0.1 and 1 request per second 

(the minimum allowed inter-arrival time of the requests is specified in the SLA contract). 

Processing capacity of the   jth   server allocated to the ith   client’s VM is calculated as ij

p

jC  , where 

ij is  

the  portion of processing resources of the jth    server that is allocated to the  ith  client (assumed  to  

be equal to  1/(number of clients)  assigned to the server  jth); 

Service rate  ij of the ith client on the jth server (of capacity 1), that is,   ij  is the service rate of the  

ith client on the jth server when a unit of processing capacity is allocated to the VM of this client; ij   

are set based on the highest clock frequency for the servers. 

To demonstrate the principal capabilities of model checking we use a simplified version of the above-

mentioned model:  just one client is   assigned to each server ( single  VM runs on each server, namely, 

VM7 in Service Component Ensemble 2 of datacenter 1 [2] ),  αij=1,    ϕij=1,  λ=λij  is uniformly  

distributed between 0.1 and 1 request per second,
 ijij

p

jC    is  uniformly distributed between 1  

and 3 request per second. 

So,  the  response time (1) for the simplified case looks like R1=1/(µ-λ) and the total response time  

will be equal to : 

     R=1/(µ-λ) +  (1 - KS )*DT(LinkSpeed)          (3)                                

For the structural model monitored and controlled datacenter parameters  are: 
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 The request rate  x >0  (i.e x= λ) 

 The service rate    y>0   (i.e y= µ) 

 The Kolmogorov complexity metric  z>0  

We will assume that  0.1 ≤ x ≤ 1, 1 ≤ y ≤ 3, 0 ≤ z ≤ 1 

Performance model. There are “internal” parameters (i.e. parameters that are neither monitored nor 

controlled, but are calculated based on the parameters defined in the structural model): 

 Total response time  

                 T = 1/(y-x) + (1-z)*DT 

Goal policies. The average total processing time should eventually be in accordance with SLA 

requirements: T ≤ TSLA=4sec. 

Policy verification. To verify the correctness of this policy set, we need to construct the Kripke 

structure and to derive the LTL formulas associated with the structural and performance system 

models, 

1) Constructing Kripke structure                                 for the autonomic data centre. Each combination 

of values that can be taken by the monitored and controlled parameters of the system corresponds to 

a different state               . The monitored parameters are  x , y  and  z , so the set of states is 

                                  S ≡  { (x,y,z) |  0.1 ≤ x ≤ 1, 1≤ y ≤ 3, 0 ≤ z ≤ 1} 

The set of initial states S0 ≡ {(x, y, z | 0.1 ≤ x ≤ 1, 1≤ y ≤ 2, 0 ≤ z ≤ 0.5} 

Now we define the set of atomic propositions AP for the Kripke structure by including in AP atomic 

propositions representing the values of the configuration parameters for the system. We use the 

notation [X = a] as an atomic proposition stating that the value of the parameter X is a . In addition, 

we need to determine the truth values for the conditions representing the invariants T ≤ TSLA defined 

by the goal policies for the system.  Therefore, we also include within AP atomic propositions of the 

form [Y ≤ a] , where Y is variable and a is a constant . As a result, the complete set of atomic 

propositions AP used to define the labelling function L : S 2AP consists of all atomic propositions: 

AP={[X=a] | X   {x, y, z, }, a ≥ 0},   { [Y ≤ a] | Y  { T }, a ≥ 0} 

For example, given the state  s =(0.1, 1.2 , 0.15), in which the server (host) of VM7  is receiving user 

requests at 0.1 transactions /second, service rate of the server is 1.2 services/second and Kolmogorov 

complexity metric (currently calculated for the  server) is 0.15 , several atomic propositions that hold 

in state s   are [x=0.1], [y=1.2] and [z=0.15]. 
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The variation of metrics x, y and z must be encoded by transition relations 

R1 ≡ {(sj, sk) | x(sj) ≠ x(sk), y(sj) ≠ y(sk), z(sj) ≠ z(sk)} 

2) Deriving the LTL properties to be verified. The invariant “always T<4” maps to formula:                           

[T≤ 4] 

The LTL properties derived so far were verified using the SPIN model checker. To improve the 

efficiency of the SPIN, the advantages of the SPIN’s implementation of the state compression 

algorithm and of the partial-order reduction algorithm were used. The verification of the LTL 

properties was carried out for three system models characterized by different datacenter performance 

parameters: 

a) Link Speed = 100Mbps 

b) Link Speed = 1 Gbps 

c) Link Speed = 10 Gbps 

 When the verification of the LTL properties was performed for scenario a), SPIN detected several   

possible constraint violations (T>4 sec). For each violation case, the corresponding counterexample 

traces were generated by SPIN. For scenarios b) and c) SPIN found no invalid states, thus confirming 

that the policy set is conflict free in these scenarios.  

This case study demonstrates that a set of autonomic computing policies that is valid for one scenario 

can exhibit conflicts when the autonomic system operates in a different scenario. Model checking 

provides the unique capability to verify autonomic computing policies exhaustively and for the precise 

scenario in which the self-managing system operates. 

Conclusion and future work 

As we have clarified in the introduction section, the cloud computing is a new paradigm, and 

complexity of its design and security management structure has been revealed. Therefore, the security 

development process is still an opening case yet. However, the research has been conducted according 

to reality of the current demands; naturally, the well-designed security policy leads to a stable 

performance of  the whole Autonomic Components Ensembles behavior, as well as the action that 

should be taken against any security violation. 

The research presented in the thesis investigates some main challenges in the modern 

autonomic cloud computing, i.e. the unpredictability of performance, possible violations of  SLA, the 

complexity of the security design, and formal verification via model checking. Therefore, new 
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structural model of formal technique, developed in the thesis, allows us to detect the policy conflict 

in AC’s environment by using a new probabilistic interpretation of KS.  This interpretation is used to 

calculate the required response time including the downtime in case of migration the AC from one 

host to another. Hence, the SLA violations will be also accordingly determined  

In addition, it is shown in the thesis that the KS can be computed using string compression 

mechanism, and corresponding methods and classes in jResp are developed. . Furthermore, we 

extended our standard topology to tackle modern infrastructure's demands, e.g. fault tolerance 

technique, resource pool approach, and live migration of the VMs among the cluster members. The 

prototyping of the reported work is given to address some specific points that will assist in our research 

goal, i.e. knowledge repository that is essential part in any autonomic component, reflects the natural 

behavior of the deployed VM and its interaction with the rest of the other VMS. Therefore, it is shown 

that the autonomic component presents a promising approach to achieve high-level of expressiveness 

and security by adding self-awareness capabilities to new IT infrastructure.  

Finally, the future work will be connected to biological approach “Artificial Immune Systems” 

and its instantiation based on our work standpoint. That is, to simulate the way that how the SCEL 

and its environment could be rigorously developed and reconstructed for finding the threats in early 

stages, regardless of the threat initiation "internally or externally," and the corresponding adequate 

response. 
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